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Abstract

Alan Powell has made significant contributions twe tunderstanding of many
aeroacoustic problems, in particular, the problewhdroadband noise from jets and
boundary layers. In this paper, some analyticltesuwe presented for the calculation of
the correlation function of the broadband noiseated from a wing, a propeller, and a
jet in uniform forward motion. It is shown thathen the observer (or microphone)
motion is suitably chosen, the geometric termshef tadiation formula become time
independent. The time independence of these tkrawls to a significant simplification
of the statistical analysis of the radiated noiseen when the near field terms are
included. For a wing in forward motion, if the elbpger is in the moving reference frame,
then the correlation function of the near and feldfnoise can be related to a space-time
cross-correlation function of the pressure on tiegvgurface. A similar result holds for
a propeller in forward flight if the observer isanreference frame that is attached to the
propeller and rotates at the shaft speed. Fort anjenotion, it is shown that the
correlation function of the radiated noise can léated to the space-time cross-
correlation of the Lighthill stress tensor in tle¢. [Exact analytical results are derived for
all three cases. For the cases under presentdepason, the inclusion of the near field
terms does not introduce additional complexityc@®pared to existing formulations that
are limited to the far field.

1. Introduction

Alan Powell’s career in acoustics spans a periothofe than fifty years. He has
made important contributions to the twentieth cgrisumajor areas of acoustic research,
including random vibration, edge tones, jet noiseé boundary layer noise. Alan Powell
was one of the first researchers to recognize tipoitance of trailing edge noise [1].
Moreover, he has kept up admirably with development all of these areas. His
publications convey a deep understanding of thesiphyof acoustic phenomena. He
writes clearly and explains ideas lucidly with a stesful application of analytical
techniques. It is with great pleasure that thén@nst dedicate this paper to Alan Powell
for his lifetime achievements. He is the Grandchea to us all.

There is a long history of research in broadbanden@diation from jets and surfaces
(see the references in many chapters of [2]). Y¥sdzeronautical problems that require
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broadband noise prediction are found to presentesah the most challenging
aeroacoustic problems to date. It is fair to dat the acoustic analogy has played a
major role in the analysis of such problems. Mursight and understanding have
resulted from such analysis [3, 4, 5, 6]. Howetleg, lack of sufficient measured data, as
well as the complexity of the problems themselyess caused researchers to make
assumptions that simplify their analyses and remgg@roximate formulations. Two of
the most common simplifying assumptions are thaarobbserver well into the far field
and a source occurring at low Mach number. Thelyaisapresented herein will
demonstrate a method by which both of these assoingptan be relaxed. Furthermore,
the authors feel that there is a need to removeesomall of the approximations that are
commonly made in broadband noise prediction.

In order to predict a random signal that resultenfra broadband source, it is logical
to develop an acoustic formulation that is basedtatistical analysis. Previous authors
have derived important results with the use ofidtaeal analysis, e.g., [2, 3, 4, 5, 6].
Furthermore, because of the current interest ifraane noise, recent reports on
statistically based research are appearing in iteeature, e.g., [7]. To the present
authors’ knowledge, there are no published resthiéd are similar to those derived
herein.

In the present paper, some analytic results arsepted for the calculation of
broadband noise radiation from wings, propellers j@ts in uniform rectilinear motion.
The objective is to obtain exact formulations facls calculations, with the assumption
that some statistical properties of the flow arewn on the surface of the wing or
propeller blade, or within the volume of the jdBecause exact results are desired, any
near field terms that occur in the derivation ar@uded. No assumption is made on the
source speed, other than a restriction to subsoaton. It is shown that the inclusion of
the near field terms does not add more complexitythte derivation of the final
formulations. It is also important to realize tkfa inclusion of the near field terms does
not further complicate numerical algorithms tha ased for noise calculations.

The following section describes the analytical apph to the three formulations
derived in this work. Each derivation begins wih appropriately chosen form of
Lighthill's acoustic analogy [8], with its usuallston, i.e., with respect to an observer
(or microphone) that is fixed with respect to thedim at rest. A suitably chosen
observer motion then results in the time indepecéef all the geometric terms in the
radiation formula. Such a result greatly simptfi@ statistical analysis of the radiated
noise, even when the near field terms are retairi#te autocorrelation of the acoustic
pressure can then be directly related to the atos®lation of the surface pressure in a
simple form that can be interpreted physically.

In Section 3, the analytical method described ahievérst applied to a wing in
uniform rectilinear subsonic motion with fluctuadisurface pressure. For an observer
fixed to the undisturbed medium, the acoustic pnesss given by the solution of the
loading term of the Ffowcs Williams-Hawkings (FW-Euation [9]. The closed form
solution to this equation is available and is toenidation for the analysis. If the
observer is relocated to a frame of referencerniates with the wing, then many of the
terms in the solution become time independentdingla simpler result that avails itself
to a statistical formulation. A correlation furaoi of the acoustic pressure is then derived
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that is valid in the near and far fields. The tsg exact formulation can be simplified
by making various geometric or physical approximadi for the derivation of other
useful results.

In Section 4, the method by which the correlationction is derived in Section 3 is
extended to a propeller in uniform forward motignlticating the observer in a reference
frame that rotates at the shaft speed of a prapellehe time independent functions
appearing in the acoustic pressure correlationtimmdor a propeller can be computed
numerically, and not analytically as in the casea @fing in motion.

The analysis begins similarly for a jet in forwdhght in Section 5, with an exact
result for the acoustic pressure at an observdtigodixed to the undisturbed medium.
The transfer of the observer to a frame moving wvilib jet results in many time
independent terms. The acoustic pressure coworldtinction is found by the same
procedure that is used for a wing or a propellenotion. Some of the consequences of
the derived results are discussed.

2. Analytical Approach

The time domain approach used in the present woobased on Lighthill’s acoustic
analogy [8]. The governing equations are alwaygesbin a reference frame that is fixed
to the undisturbed medium. The space-time varsapiet) are associated with this fixed

reference frame. In addition, the analysis reguma observer in a moving frame of
reference with associated space-time variabigst . Spatial locations within these two
reference frames are related by the coordinatesftvamation X = X(X,,t ) The acoustic
pressure in the frame fixed to the undisturbed madis denoted byp'(X,t .) In the
moving frame, the acoustic pressurefix,,t . MNote thatp’(X,t )and p'(X,,t) are
represented by different analytical expressions #mefefore, the present authors chose
to use different symbols for these two functions.

All of the present derivations begin with an eqotof the form
0% p'(%,t) = Q(X,1) 1)

where D ? represents the linear wave operator, &X,t is the appropriate source

distribution for a given problem. Eqg. (1) represethe propagation of sound to an
observer in the reference frame that is fixed ® tindisturbed medium. An analytic

expression is now desired f@'(X,,t , the acoustic pressure perceived by an observer in
a moving frame of reference.

Fig. 1 schematically shows two paths to the dessolution in the moving reference
frame. Taking the first path, along the solid Jireads immediately to an equation of the
form

(Xo:1) = Q(Xo,1) ) (2
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Fig. 1. Solution Diagram. The coordinate transformatiom dae
incorporated before solving the equation (solié)iar afterthe solution i
obtained (dashed line).

where L is a complicated wave-like operator, aﬁdi,t) is the associated source term in
the moving reference frame. In most cases, thatieal of Eg. (1) is more easily
obtained than the solution of Eg. (2) because efsimplicity of the free-space Green’s
function for the wave operatal °>. Therefore, the second solution path is chossn, a
shown by the dashed line in Fig. 1. For the pnolslainder present consideration, the
solution p'(X,t) in the fixed reference frame is readily availabléhe solutionp'(X,,t )

in the moving reference frame is then obtained pplyang a suitable coordinate
transformation to the fixed-frame solution, i.e.,

P'(Xo:t) = P'(X(Xo,1),1) (3)

For an appropriately chosen coordinate transfoonatall of the solution’s geometric
terms in the moving reference frame become timeepeddent, thus facilitating the
subsequent statistical analysis. The requiredstoamation X = X(X,,t ) is easily

specified for the cases under consideration irptesent paper.

3. A Wingin Uniform Rectilinear Subsonic Motion

As early as 1954, Powell studied boundary layesexdiom a rigid boundary as a
distribution of fluctuating dipoles [10]. In 196@¢ studied this problem further [11],
extending, to some extent, the work of Curle [1R].this section, the noise from random
surface pressure fluctuations on a wing in motisnconsidered. Surface pressure
fluctuations are caused either by the interactibthe wing with atmospheric turbulence
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or by turbulent fluctuations in the boundary lay€he acoustic pressurp’(X,t) can be
calculated from the solution of the FW-H equatiataining only the loading term:

2p == [pn ()] )

Here, 02 denotes the linear wave operator with constanhdapeedc, p is the
fluctuating pressure on the wing surface, a{d is the Dirac delta function. The wing

surface is defined by the functioh(X,t sych thatf = Oon the surface of the wing and
f >0 in the region exterior to the surface. The notatn represents the-th

component of the outward unit surface normat Of . In this equation and henceforth,
unless otherwise noted, the summation conventiasssamed for repeated indices.

The solution of Eq. (4) for a wing in uniform matias [13, 14]:

47Tp’()‘(,t) :EJ. { pniﬁ } ds+ J. |:p[(1_M2)n|ﬁ _(1_Mr)M l,’;.]:| ds (5)

c ra-m,)? r’e-m,)>
f=0 f=0

The flight velocity vectorV =[V ,00]" is directed along thex -axis. The observer
space-time variables are denotedt inXhe reference frame fixed to the medium at rest
However, it is important to remember that the stefantegration is performed with
respect to the spatial variables in the movingresfee frame. The variablp is the time
rate of change of the fluctuating surface presguas measured by a transducer on the
wing surface, and; is a component of the unit radiation vector r/r . The quantity

M, is the Mach number in the radiation direction,imed by M, =M [0f, where

M =V /c is the Mach number vector based on the forwardoitgl of the wing. The
subscript fet” denotes evaluation of the bracketed terms atdethtimet—r/c. Note
that the far field radiation is governed by the dimate of fluctuations of the surface
pressure.

A frame of reference that moves with the wing isvmmonsidered (See Fig. 2). Let
this moving reference frame coincide with the framed to the undisturbed medium at
the timet = Q To find the acoustic pressure at the observsitipa X, in the moving

frame, X must be replaced wittx,+Vt in Eq. (5). If an arbitrary source point on the
wing, in the moving frame of reference, is desdlilby the position vectog, then the

following two functions aréime independent and can be written in terms of the variables
X, and:

(6)

Fl(zo,ﬁ):{ nf } | Fz(xo,ﬁ):{(l_“” LA

4mrer (1-M )? 4m?@1-M,)?

ret

See [15, Sec. 5] for details of the analytic exgpi@ss for the two functions in Eq. (6) in
terms of the variable&, and#. The time independence of these two functionatiyre

simplifies the statistical analysis of the acouptiessure. Note that the emission distance
5
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Fig. 2. The reference frames used in the analysis of a wing jet it
uniform motion. TheX-frame is fixed to the medium. Thg,-frame

moves with the wing or the jet at speédilong thex -axis. The leadir
edge of the wing faces in the positixedirection. The line segmed0’
has lengthvt, # is the source position ang, is the observer position
the moving reference frame. For a propeller, #jeframe is attached

the propeller blade, it rotates around theaxis, and moves forward w
speedV along the same axis.

r”=[r],«, as well as other geometric variables sucfi aare also time independent and
can be expressed as a functionxgfand i, as discussed in [15, Sec. 5]. Fig. 3 shows

the geometry associated with radiation from a s®atcpositiony in the moving frame.

The pictured construction shows that this geomistimdependent of time. The triangle
ABC, sometimes called the Garrick triangle in theerhature of linear unsteady

aerodynamics, is seen by an observer positiondtkeistationary frame of reference. The
shape and the dimensions of this triangle do nahgé with time.

Therefore, Eq. (5) can be rewritten with respedah®moving reference frame in the
following simplified form:

P'(Xq,1)

p'(X,+Vt,t)

= [ Rt Pl =170) + Fu (i) plat -1 70 as

f=0

Using the notatior{ D[ﬂ to denote an ensemble average in time, the autdaton of the
acoustic pressure in Eq. (7) can be written:



B (OBS.)

C VAT=Mr* A

Fig. 3. The geometry of radiation as seen by an obsdixed to the
medium at rest. A and B are the source and ohbspnations at a give
observer timg. C is the emission position of the source, &®8i=cAr,
where At is the signal propagation time from C to B. Apption ofthe
law of cosines to triangle ABC vyields" as a function of(X,,# )
independent of time, as aM, andr,. Note that the symbat denote
source time in this figure, and not delay time.

(B %) B(Rot+n)= [ [ [RF{ptEt-rIc) p( t+7-r"70)

+FF (PGt —r/c) p@i't+r-r'"/c))
+F/F,(p(it-rc) p@ t+r-r'7c)) (®)
+F,F(p@,t=r"0) p(i',t+7-r"c))]ds, ds,

where the prime notation on the quantities F,, andr" denotes the replacement of the
variable# in these quantities with'.
Now, define a surface pressure cross-correlatiantion by
R =(P@,1) P’ t +7)) 9)

Using the ergodic hypothesis, the variable depecelehthe cross-correlation function in
Eq. (9) can be expressed:

Ry =( PG t=r"/c) p(i't+1-r"/c)) =Ry, (7.7, T+(r"=r')/c)  (10)

Let A(y) denote the correlation area as a functionjof Then the acoustic-pressure
correlation function in the moving reference fraca@ be written:



(P'(Xo:t) P'(Xot+7))=
! ’ ] ' (11)
[ [RF 0,R,* (RF; +FF)0,R,+F,F;R,] oS, ds,

T pp
f=0 A(iy)

where 0, and 0,, denote, respectively, the first and second padeivatives with

respect to delay time . Eq. (11) is the main result of this section #&nd exact for the
calculation of both near and far field loading mofsr a surface in uniform rectilinear
motion.

A few remarks are in order at this point. Notet i cross-correlation functioR,,

in Eg. (9) can be obtained from measurements hysdhacers on the wing surface.
Furthermore, although the assumption of ergodistyeasonable, one cannot further
assume that the dependenceRyf on the position variableg and#' can be generally

expressed in terms of the separation vegtew;'. Finally, it is interesting that, in the far
field, Eq. (11) takes the following simple form:

(F(Xoh) FRot+0)= [ | FF0,R,dS,ds, (12)

T pp
=0 A(ir)

However, because the functio’s and F, can easily be computed numerically, the
restriction to the far field is not necessary, bgrely a convenience for appropriate
problems. If qualitative results are desired,,eagMlach number dependence rule for an
observer in the far field, then further simplifyimgsumptions can be made in the above
equation. It is clear from Eq. (11) that, for aligtic problem when the observer is in the
near field, a Mach number dependence rule thagriwet for a simple dipole in motion
cannot be expected to hold. This is because ofctmplicated dependence of the
functions in Eq. (11) orX, and 5. However, numerical evaluation of the integraltioe

right-hand of Eq. (11) is quite feasible and camega good picture of the near field
behavior of the broadband noise from a wing in oroti

By analyzing experimental data, analytical models be deduced for the surface
pressure cross-correlation function on a wing. ilAgt noise analysis, such models are
very important. If available, the experimentallyeasured surface pressure cross-
correlation function can be directly used in a eaislculation. It is interesting to note
that the numerical evaluation of the correlationdiion of the acoustic pressure in the
near field is no more difficult than in the farliecomputation.

4. A Propedller in Uniform Forward Flight
In order to include the effects of rotational matidghe solution of Eq. (4) becomes
slightly more complicated than the solution for thieg in Eqg. (5). For a propeller with

forward flight velocityV , the acoustic pressure at an observer locakioat timet is
given by the following expression [13, 14]:



cJ[r@a-Mm,)* r@a-m,)°

f=0

ampi(x,1) == Pty _PM, }ds
ret

(13)

plA-Mnf - A-M)IMF] | o
2 3
r@a-Mm,) -

f=0
where M, is thei-th component of the local surface acceleratiortoredv/dr divided
by the sound speed The reader is again reminded that the surfategiation is
performed with respect to the variabjein the moving reference frame. The objective in

this section is to derive a result similar to Efjl)(for the more complicated case of a
rotating propeller in forward motion.

Note that the simplicity of Eq. (11) depends ontilee independence df,, F,, and
r” in Eq. (7). Itis natural to ask whether therésexa straightforward extension of Eq.
(7) to rotational motion. If the observer is pldda a rotational reference frame that is
attacheded to the propeller blade, can time indégetrfunctionsF,, F,, andr” again be
determined? The answer to this question is aftimaby the following reasoning.

Let @ denote the angular velocity vector of the propedied V its uniform flight
velocity. In a similar fashion to the wing probleahove, assume that a reference frame
that rotates with the propeller and a referencenérdhat is fixed to the medium at rest

coincide at the time¢ =0. Let X, denote the observer position in the rotating esfee
frame andiy be the position vector of a point on the propdilade surface in the same

reference frame. Note that the relative positibthese two vectors is the same for all
observer time. Within this framework, define the following twionctions’

[ nf
Fl(xo’”)_Lm:r(l—M )2
r dret
(14)
. A | _ 2 ~ _ _ ~
Fz(xo,ﬁ): M 3 + -V )nizi - Mar)Miri
4rer(1-M,)° | 4 “(1-M,) -

It remains to show that the two functions in Ec¢)(las well asr”, are independent of
the observer timé An analogous result to Eq. (7) will then immeelig follow.

The time independence &, F,, andr"” can be demonstrated in the following way.
Referring toFig. 4,ata given observer time, freeze the position of the observer in the
reference frame fixed to the medium at rest. Tar@rdoution to the acoustic pressure at
the observer positiox, from a source positiofy on the propeller blade surface requires
the evaluation of the location of the source positat the retarded time-r“/c. The
required location o# can be visualized by letting the poifttrace its history backward

" Eq. (14), as shown here, has been corrected franprinted on page 343 Imternational Journal of
Aeroacoustics, Vol. 2, No. 3 & 4, 2003. An erratum has beenrsitted to the journal.
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Source trajectory
for source time T <t

Fig. 4. The geometry of radiation from a source on a ptepélade, a
seen by an observer fixed to the medium. A andeBtlae source al
observer positions at a given observer ttme€ is the emission position
the source, an€B = cAr, whereAr is the signal propagation time fr
C to B. Cis found from the relatioBA = (helical speedxAr = (helica
Mach number)r"”, where CA is the distance along the helix from (
A. This shows that”, M_, andf, are functions o{X,,# ) Note that th
symbol 7 denotes source time in this figure, and not detag.

in time on a helix (See Fig. 4). The emission poirthis source lies on this helical path
and is always in the same physical location re¢atosthe observer position, independent
of the observer time In this discussion, the observer is positiomethe frame fixed to
the medium and observing the propagation phenomenon

Using Egs. (13) and (14) within the aforementiofrachework of a rotating reference
frame, the acoustic pressurexat can be expressed in the following form:

P'(Xg* (@ % X, +V ), t)

P'(Xo,1)
(15)

[ TFCoaum) bt t= 1)+ Fy(R0m) o, t=r 0] 05

where F, and F, are defined in Eq. (14). Note that, for a rotagmopeller, the functions

F,, F,, andr”, as well as other geometric quantities, cannotdtermined in closed
form, even if there is no forward flight. Howeveahese functions can easily be
computed.
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Thus, it has been established that the right-haddssof Egs. (15) and (7) are
identical in form, with time independent functiofs, F,, andr”. Therefore, Eq. (11) is
also valid for the acoustic-pressure correlationcfion at an observer in a rotating
reference frame that is attached to the propeléeteh with the understanding thit and
F, are given by Eq. (14). Moreover, all of the comisefollowing Eq. (11) for a wing
in uniform motion also apply to a propeller in fawd flight.

The measurement of sound by a rotating microphoesepts some experimental
difficulties, such as the presence of wind noislawever, it is possible to use advanced

signal analysis techniques to overcome these difigs. The results in this section are
presented to bring attention to the simplicity of EL1) for a rotating microphone.

5. A Jet In Uniform Rectilinear Subsonic Motion

A jet in uniform rectilinear subsonic motion is naensidered. Lighthill’s [8] jet
noise equation is:

2 1o 62-I-I]
O p'(x.1) =

= 16
o (16)

where T; is the Lighthill stress tensor. The jet is assdnfeee of shocks, the
implications of which will be discussed below. Galer a frame of reference that moves

with forward flight of the jet and moves with a forim rectilinear subsonic velocity .
In [16], an exact solution of Eq. (16) is derivdaatt involves only the observer time
derivatives and includes the near field terms:

daap(Xt)== —=| | —"~—| dy + == | | -—="—| dy
P(x.0) c? ot? L(l—l\/lr)L T e Lz(l_Mf)L !
% (%

+ grrr _Tii d*
Ca-M) |
W

Here, T, =T,ff. and M, is the Mach number in the direction of noise rtidimbased on

v yr ijrit

(17)

the forward velocityV . The variablel’ represents the turbulent volume in the jet while
dy denotes a volume element. It is important to rib&t the observer time derivatives

here are performed while keeping the observer ilmtak fixed. In fact, it is re-
emphasized here that the observer in Eq. (17) ssrieed in a reference frame that is
fixed to the undisturbed medium. Furthermore,tlad velocities in the Lighthill stress
tensor terms are evaluated relative to the framedfito the undisturbed medium.
However, the integrals in Eq. (14) are performedhm moving reference frame. These
facts can all be inferred from the derivation & ttbove equation.

Brentner [17] has derived an equivalent expressmrEq. (17) when the time
derivatives are taken inside the integrals:
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4rrp'(X,t) = [| T3, dii
p 1 J _Czr(l_l\—/]r)?, 3 ’1
or (18)
o . .o~ _ ~ i an
+ - Ti _ 4T (L. 31-M )1'” fif, di
J| of@-M)? efe-M)° =Mt |
v r
(200, - e Mg | sa- ]
. r’@-m,)’ r*a-M,)* et
v r

In Eq. (18), a dot over a symbol denotes a soumee derivative, keeping the variabig
fixed, i.e. the time rate of change of the paramasemeasured in the moving frame. The

tilde notation M represents a Mach number based on the forwarcitely/ . The
above equation, specialized to the problem of irgablade noise, has been used
successfully by Brentner [17] to compute high-spleelicopter rotor blade noise.

In a manner similar to the previous two sectiofighé observer is in the moving
frame at the positiorx,, then many of the terms in Eq. (18) are time imthefent. The

acoustic pressure in the moving frame is, therefore

P'(Xo:t) = p'(Xp+ V1) (19)

:j [Fij ()_(0"7)1-}] (ﬁ,t - rD/C) + Gij (XO!ﬁ)Tij (ﬁ,t - rD/C) + Hij ()_(0"7)Tij (ﬁ,t - rD/C)] dﬁ
4
where three time independent tensor functions efieet as follows:

rr.
F.(X,,n)= i B
i (%o, 1) {477c2r(1—M,)3}ret

5 MA 3(1—W>r1r:}
ret

G. (X,,7) =| - =~ ~ 7 20
u( o: 1) { 4ITCI’2(1—|V|,)2 ﬂCrZ(l—Mr)s 4ITCr2(1—|\/|r)4 (20)

H. (X.,,n) = — = + =
i (%o.1) { AT 1-M ) 2 @A-M )t amr’@-M. )

MM, -(1-M?)J,  31-MA)M,f _ 30-M>)FF, }
ret

Here, J is the Kronecker delta. As in the previous twotieas, r =[r] ., is also time

» Yij
independent.

The velocity terms in the Reynolds stress termhefltighthill quadrupole tensor are
now considered. Leti andU, denote the velocity components of the jet in thevimg
and the stationary frames, respectively. Thentdhmas involving the velocity product in
the Reynolds stress tensor in all the above equatioust bepU,U,, as explained

above. In terms of the velocity components in theving frame, using the relation
U, =u, +V4;, the velocity terms of the Reynolds stress are:
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UU, =uu, + VU, +V?
UU, =uu, +Vu, (i21 (22)
UU, =uu, i,j %1

Thus, the acoustic pressure in the moving frame rcam be expressed in terms of
guantities that can be measured in the moving frafmeference. Furthermore, the only

time dependent quantities in Eq. (19) are the lhghstress tensor term and its time
derivatives.

The analysis for the wing and the propeller in fardvmotion is now repeated. The
autocorrelation function of the acoustic pressame loe expressed as follows:

(P'(X,1) P'(X,t+7)) = j j [Fij FQ<T}]. (i t-r"Ic) T, (', t+ r—r’D/c)>
v v

+ Fy Gy (T, 60 t=r 'Ie) Ty ' t+ 7 1%c)

+

Fy Hy (T, (7, t=r ) T, (7', t+ 7-1"c))

+

G, Fi (T, (i1 t=r 1) Ty (', t+ 7-1""Uc)

+

G, Gy (T, (i1, t=1 1) Tyy (i, t+ 7-1""Uc))
(22)

+

Gy Hy (T, (7 t=r ) Ty, (', t+ 71" fc))

+

H, Fo (T (7 t=r 1) Ty (' t+ 7-1'7%c))

+

H, Gy (T, (i, t=r"Ie) T,y (i7", t+ 7-1""Uc))

+

H, Hiy (T, Gt 0T, (' t+ 7-1'1c)) ] dip ol

where the variablg is replaced by the variabig in the primed quantities. Now, define
the cross-correlation function of the Lighthillests tensor by:

Ry (@.71',7) = (T, (1) Ty ('t + 7)) (23)

Then, if V() is the correlation volume, Eq. (22) can be writhsn

13



<5'(X’t) P(xt+1)) :I J[Fii Fi 0. Ry (1, 7', T+ c—1""c)
V Ve (i)
+(F, Gy +G; Fg) 0., Ry (7,7, T+r-lc—r'"c)
+(G;Gy +FjHy +H, F) 0, Ry, 7', T+rfc—r""lc)  (24)
+(GyHy +H; Gy) 0, Ry (., 7', T+r'lc—r""Ic)
+HyH Ry (7, 7, 7+ rD/C—r’D/c)] di' dij

whereo, ,0,,, etc., denote partial derivatives with respealetay timer . For far field

radiation with the observer in the moving framee tutocorrelation of the acoustic
pressure assumes the following simple form:

(Fd Bt+n)=[ [ [FF 00R@ 7 1= Jajdi  (@5)
vV Ve

Therefore, to calculate the autocorrelation of #ueustic pressure in the moving
frame, the cross-correlation function of the Lightstress tensoR, (#7,#%',7) must be

modeled, based on experimental observations. mergé such modeling is a difficult

task. However, the mathematical framework givereloan lead to the development of
analytical models that can be used to make predistiito compare with acoustic
measurements [18].

Note that, although Eq. (17) is valid for a jetlw#hocks, Egs. (18) and (19) are only
valid for shock-free jets. The reason for thistmeson is that the observer time
derivatives in Eq. (17) must be treated as gerssd@lderivatives in order to interchange
those derivatives with the integration [19, 20]. h&4 the generalized derivatives are
brought inside the integral, any shock discontininta jet will produce additional terms
that are not included in the present jet noiseyaiml[21]. The analysis of jets with
imbedded shocks is more complicated than whatesgmted here.

Finally, note that the results presented in thiise are only a preliminary statistical
analysis for jet noise. The works of Ribner [Z2pwcs Williams [23], and others can be
used in modeling the cross-correlation terms in(E24j).

Concluding Remarks

Some exact analytical results have been deriveth®prediction of broadband noise
radiated from a wing, a propeller, and a jet infamm subsonic motion. For an observer
in an appropriate frame of reference, the corm@hatunction of the acoustic pressure can
be directly related to the space-time cross-caitgleof either, the surface pressure on a
wing or propeller blade, or the cross-correlatiérih@ Lighthill stress tensor in the case
of a jet. It has been shown that the inclusiothef near field terms does not add to the
complexity of the analysis. The development ofStheesults requires that the observer
be in the moving reference frame in the case ofrawr a jet in forward flight, or in a
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rotating reference frame in the propeller casees€hrequirements introduce many time
independent functions in the integrands of the stouformulations, resulting in
considerable simplification of the statistical assd.

These analytical results were developed with prattapplications in mind. In
particular, the goal of the present analytical dmwement is to obtain statistical
formulations for which the required input data aot unusual or difficult to measure. It
is shown here that this can be achieved by thectsmheof an appropriate frame of
reference in which the observer position is desdib Although some of the present
results may appear complicated, they are concéptsiahple for numerical work. One
of the avenues open to current researchers invodwgerimenting with analytical
modeling of the cross-correlation function in adaurmulations, using measured data
for guidance. In addition, experimental data clevags be used directly in the present
analytical results, when they are available.

As a final remark, note that an analysis similathiat presented herein can be used to
obtain a cross-correlation function that correlatfes surface pressure to the acoustic
pressure. The derivation of such a cross-corogidiinction was presented by Siddon
[4]. As reported by Siddon, such an analysis cawdry useful for the identification of
noise generating regions.

The aeroacoustics community owes much to pioneeesgarchers like Alan Powell,
who led the rest of us to the importance of idgmtd and solving significant acoustic
problems. We wish him all the best for many ydarsome.
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